
Ori’s Guide to Self-
Hosted LLMs

Ciera Fowler

ML Engineering Lead

September 2024

I. Introduction

II. Self-Hosted LLMs

III. Model Selection

IV. Optimising LLM Inference

1

Agenda

2

Learning Outcomes

• Learn when to self-host large language models instead of using

APIs providers

• Learn about GPU hardware requirements for LLMs

• Learn how to select the appropriate model for your use case

• Learn LLM optimisation strategies: quantisation, parallelism, and

inferencing engines

Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog

I. Introduction

3

4

ML Engineering Lead @ Ori

MBA Candidate @ LBS

Staff Data Engineer @ Hinge

Senior Data Architect @ Clear Street

Data Engineering Manager @ Ocrolus

Consultant @ Element22

Data Engineer @ Enso

ME in Chemical Engineering @ Cooper Union

Ciera Fowler

Now:

2023

2022

2019 – 2022

2017 – 2019

2014 – 2017

2010 – 2014

5

Ori is the AI Native Cloud Platform

Deploy AI-optimized GPU instances for training, finetuning and inference workloads. Significantly

reduce GPU costs compared to traditional cloud providers. Scale effortlessly from on-demand instances

to custom private clouds with bare-metal, virtual machines and Kubernetes GPU instances.

II. Self-Hosted LLMs

6

7

Why Self Host LLMs?

Ori customers typically say:

• Data privacy and non-expatriation

• Customise (Optimise?) models
(e.g. finetunning, quantisation)

• No “noisy neighbor” interference

• Reduce Cost
(e.g. high utilisation, summarisation use cases)

• Predictable Costs

• Prevent Vendor Lock-in

• Control model versioning/updates

Example use cases:

• Research using sensitive healthcare data can self-

host to ensure participant confidentiality and

compliance with data privacy regulations like

GDPR.

• Research summarising/analysing large social

media datasets for sentiment analysis may face

prohibitive API costs.

• Long-term research projects will want to use the

same model version throughout analysis to prevent

to prevent inconsistencies in results over time.

• Research that requires knowlege of a regional

dialect can fine-tunned a model cost effectively.

Maintain complete control over the data, model, and environment.

8

Reference Architecture

9

Reference Architecture

10

GPUs and CPUs

CPU - Central Processing Units

• The CPU is like the brain of the computer.

Everything the computer does, like running

programs or apps, goes through the CPU.

• It carries out instructions, makes calculations, and

completes tasks.

• Good at handling a few complex tasks at a time. It's

optimized for sequential tasks where one step is

completed before moving to the next.

• Best for general computing tasks, like running word

processors, web browsers, or operating systems.

GPU - Graphics Processing Units

• The GPU is specialized for handling tasks that

involve processing large amounts of data at once,

such as rendering images and videos or performing

machine learning computations.

• It excels at parallel processing, meaning it can

handle thousands of smaller tasks simultaneously,

which makes it ideal for graphics, AI, and other data-

intensive workloads.

• Its ability to process multiple operations in parallel is

crucial for accelerating tasks that would take much

longer on a CPU.

11

All GPUs are not created equally...

NVIDIA Chips Dominate the Market:

• Industry-leading performance and reliability

• Software ecosystem (CUDA) and developer support

NVIDIA Chips:

• A100 – released 2020 (previous generation)

• H100 – released 2022 (current flagship)

• H200 – expected 2024 (next generation)

H100 wholesale prices are
estimated to be at least

US$30,000 each

Nvidia data centre GPU
market share is

estimated at 98%

Source: HPC Wire

Source: Tom’s Hardware

https://www.hpcwire.com/2024/06/10/nvidia-shipped-3-76-million-data-center-gpus-in-2023-according-to-study/
https://www.tomshardware.com/news/nvidia-to-sell-550000-h100-compute-gpus-in-2023-report

12

GPU Configuration

Key GPU Attributes

• vCPU – virtual Central Processing Units

• RAM – Random Access Memory, aka “fast

memory”, temporarily holds data that the computer

needs quick access to while running programs.

• VRAM - video memory is specialised RAM that

helps a computer's graphics card quickly process

images and large tasks like LLMs.

• Storage NVMe - high-speed storage (faster than

SSD) that enables the computer to access and save

large files almost instantly.

• Storage SSD - Solid-State Drive is ”slow memory”,

that is used to keep files and programs over long

time periods.

• Bandwidth - How fast data move can into and out

of the system.

Practical Implications

1. VRAM –the entire model needs to be held in memory,

based on the number of parameters and precision of the

model

2. (v)CPU – the number of cores will determine the level of

parallelisation you can support

3. Bandwidth – for online applications (e.g. chatbots), this

can become the bottleneck

13

Setting up a GPU Configuration on Ori

To Launch a VM on Ori’s Public Cloud:

1. Select GPU type & count
→ See previous slide

2. Choose a location
→ Geographical distance impacts latency

3. Choose an OS image
→ Typically Ubuntu v22.04 is a safe option

4. Configure Init Script

5. Set up networking
→ Allows external network access

6. Add public SSH key
→ This is like a “password“ to allow access

7. Name your virtual machine

A screenshot of a computer

Description automatically generated

https://console.ogc.ori.co/provisioning/vms/request

III. Model Selection

14

15

Hugging Face

A company and open-source platform for machine learning that

provides:

• Tools – leaderboards, datasets

• Libraries – transformers, diffusers, accelerate

• Models

16

Open LLM Leaderboard V1

Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog

17

Hugging Face’s Open LLM Leaderboard

Leaderboards are used to aggregate and compare model quality benchmarks
• Hugging Face has become the leading source for these open-source models, widely

adopted by AI researchers and developers.

• Others are also popular, such as OpenAI’s benchmarks for closed models.

• Leading models were converging in performance, raising concerns about a plateau in

innovation

• In response, HuggingFace released version 2 of their leaderboard in June 2024

Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog

18

Why were benchmarks plateauing?

• Homogeneity in Training Data: Many models are trained on similar datasets,

leading to less variety in outputs.

• Overfitting on Evaluation Data Sets: models appeared to be trained on

benchmark data or on data very similar to benchmark data.

• Overemphasis on Scaling: Simply increasing model size isn’t yielding the same

performance improvements as before.

• Benchmark Suitability: Benchmarks were not pushing models to develop new,

real-world capabilities like reasoning or long-term memory.

• Benchmark Accuracy: Some benchmarks contained errors, e.g. MMLU was

investigated by several groups (MMLU-Redux and MMLU-Pro), which surfaced

mistakes in its responses.

Source: Hugging Face

https://arxiv.org/abs/2406.04127
https://arxiv.org/abs/2406.01574
https://huggingface.co/spaces/open-llm-leaderboard/blog

19

How were New Benchmarks Selected?

1. Evaluation quality:

• Human review of dataset

• Widespread use in the academic and/or open-source community

2. Reliability and fairness of metrics:

• Multichoice evaluations are, in general, fair across models.

• Generative evaluations should either constrain the format very much or use very unambiguous metrics or

post-processing to extract the correct answers.

3. General absence of contamination in models:

• Gating

• Newness

4. Measuring model skills that are interesting for the community:

• Correlation with human preferences

• Evaluation of a specific capability we are interested in
Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog

20

Change to Use Normalised Scores

In addition to the changing which

benchmarks are used, the average

ranking now uses normalised

scores:

• The random baseline is 0 points

• The maximal possible score is 100

points

For example, in a benchmark containing two

choices for each question, a random baseline will

get 50 points (out of 100 points). Therefore, the

range changed so that a 50 on the raw score is a 0

on the normalized score.

Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog

21

How did the rankings change?

The top 10 models under the new

rankings, as of the launch of Open LLM

Leadboard V2 (top table). Some models

maintained a relatively stable top 10

ranking (in bold).

There was a large backlog of models to

be evaluated on the new benchmarks at

the time of launch. Many more models

have been released and evaluated in the

3 months since Leaderboard V2 was

launched and the top 10 have changed.
Source: HuggingFace

https://huggingface.co/spaces/open-llm-leaderboard/blog

22

Model Selection Best Practice

With the rapid rate of change in the leaderboard, it may seem futile to select

the top-ranking model for a project when it soon will fall in the rankings

anyway.

Best practice is to take a more holistic approach to model selection:

• Limit your selection to models below a certain size. There is a tradeoff between

model size and resource costs. We typically expect bigger models to produce

higher quality results, but sometimes the incremental improvement is not worth

the cost.

• Rank the remaining options by the subset of benchmarks relevant to your use

case, rather than the average of all Hugging Face selected benchmarks.

• If you have the resources, develop your own “benchmark” or set of prompts and

acceptable responses to test the top-ranking models from the previous criteria.

23

Model Size and Performance Trade Offs

The evolution of all the 7400

evaluated models on the

Open LLM Leaderboard V1

(red, yellow, orange dots)

and V2 (black dots) through

time reveal a strong trend

going from larger (red dots)

models to smaller (yellow

dots) models while at the

same time improving

performance.

Source: HuggingFace

https://huggingface.co/spaces/open-llm-leaderboard/blog

24

The 6 Leaderboard V2 Benchmarks

• MMLU-Pro: Harder, refined question set with 10 multichoice answers each,

improved quality and noise reduction. Focuses on reasoning.

• GPQA: Expert-designed, PhD questions aimed at preventing model

contamination by gating the questions.

• MuSR: Complex, multi-step reasoning problems like murder mysteries or team

allocation.

• MATH-Lvl5 : High-school-level competition math problems, focusing on strict

output formats.

• IFEval: tests the capability of models to clearly follow explicit instructions, such

as “include keyword x”, rather than the actual contents generated.

• BBH: 23 challenging tasks testing logic, language understanding, and world

knowledge. It is reportedly difficult for both models and humans, and strongly

correlates with human preferences. Source: HuggingFace

https://huggingface.co/spaces/open-llm-leaderboard/blog

25

Correlation of Benchmark Results

Different evaluation results are not always

correlated with one another:

• MMLU-Pro and BBH are rather well correlated. These

benchmarks are also quite correlated with human preference

(i.e., they tend to align with human judgment)

• IFEval targets chat capabilities. It investigates whether models

can follow precise instructions, so it tends to favour chat and

instruction-tuned models, with pretrained models having a

harder time reaching high performances.

• MMLU-Pro and GPQA provide the best performance on

model knowledge rather than alignment or chat capabilities.

• MATH-Lvl5 is obviously interesting for people focusing on

math capabilities.

Source: HuggingFace

https://huggingface.co/spaces/open-llm-leaderboard/blog

II. Optimising LLM Inference

26

Parallelism

Finding the right balance

between data, pipeline, and

tensor parallelism may yield

the largest efficiency gains.

Ori’s Holistic Approach to
GPU Performance for AI

The size of inference models (and

therefore their efficiency) may be

improved through quantization, or

pruning (for instance).

Use Case(s) Definition

Are you doing training? Inference?
What models are you using?
Understanding the workloads that

matter most will help focus on the
relevant optimization areas. This is

particularly important in the context of
complex, multimodal workflows.

Model Quantization

Data Management

Ensuring data locality, and establishing
a steady data flow is particularly critical
for certain types of AI workloads (e.g.
LLMs training).

Intra-GPUs Optimization

Choosing the right type of GPUs and
their optimized software stack (making
use of mixed precision, optimized
libraries, etc.) will yield the last extra
bits of performance.

Going through these stages will remove
the most obvious pitfalls that can harm
GPUs productivity, and help you get the
best bang for your bucks!

Mission Accomplished!

Source:
Patrick
Wohlschlegel

28

LLM Precision

Model parameters are mostly weights,

which can be quite expensive to store.

During inference, activations are created

as a product of the input and the

weights, which similarly can be quite

large.

Source: Exploring Language Models

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

29

Computing LLM VRAM from Precision

Source: Exploring Language Models

“Full

Precision
”

NOTE: In practice, more things relate to the amount of (V)RAM you
need during inference, like the context size and architecture.

The memory required for an LLM can be

calculated from the precision and number of

parameters.

Taking Meta-Llama 3.1 70B as an example,

we can calculate the VRAM requirement at

different precisions:

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

LLM Parallelisation Strategies

Pipeline Parallelism

GPU A GPU B GPU C

100%

Utilization

42%

Utilization

42%

Utilization

Model & Tensor Parallelism

GPU A GPU B GPU C

80%

Utilization

100%

Utilization

80%

Utilization

Data Parallelism

GPU A GPU B GPU C

100%

Utilization

100%

Utilization

100%

Utilization

Source: Patrick Wohlschlegel
30

Data Parallelism

GPU A GPU B GPU C

100%

Utilization

100%

Utilization

100%

Utilization

Source: Patrick Wohlschlegel

• The same model is copied across GPUs, and

each processes different batches of data in

parallel.

• Data parallelism works well for simple data

sets, but performance tends to degrade as data

size exceeds GPUs memory capacity.

31

Model & Tensor Parallelism

Source: Patrick Wohlschlegel

Model Parallelism:

• The model itself is split across multiple GPUs, with each GPU handling

different parts of the model.

• Useful for large models that don’t fit on a single GPU.

Tensor Parallelism:

• Splits individual tensors (data structures) across GPUs.

• Each GPU processes a portion of the tensor simultaneously.

Model & Tensor parallelism reduces memory requirement per GPU but

introduces synchronization penalties.

GPU A GPU B GPU C

80%

Utilization

100%

Utilization

80%

Utilization

32

Pipeline Parallelism

Source: Patrick Wohlschlegel

• Model layers are split into stages, with each GPU

handling a different stage.

• Inputs move through the pipeline, allowing

simultaneous processing across stages.

• Pipeline parallelism can be very effective but may

cause low GPU utilization due to data dependencies

between layers placed on different GPUs.

GPU A GPU B GPU C

100%

Utilization

42%

Utilization

42%

Utilization

33

34

Inferencing Engines Leverage Parallelism

• TensorRT: Uses data parallelism and tensor-level parallelism

to optimize inference, distributing data across GPUs and

reducing redundant computations within tensors.

• vLLM: Employs model parallelism and pipeline parallelism,

splitting models across GPUs and processing different parts

simultaneously, enhancing efficiency for large language models.

• Grok: Implements model parallelism and fine-grained tensor

parallelism, enabling large-scale models to be split across

multiple devices while maintaining high computational

efficiency.

35

Our customers needed help

benchmarking self-hosted AI

models across different chips.

Why leave the selection of the optimal hardware to chance?

There’s no simple heuristic, but you will need:

● sufficient RAM to hold billions of parameters in memory

● sufficient bandwidth to get your prompts and inferences to

and from users

● sufficient compute to handle parallel requests at scale

BeFOri addresses this gap in the MLOps cycle.

36

1 Request:

ttft = time to
first token

Rconcurrent =
concurrent

requests

tete = end-to-end latency

…

How to Perform a Cost-per-Token Analysis
of Self-Hosted LLMs Using BeFOri: Visualisation of BeFOri Benchmarking

37

BeFOri Provides 4 Metrics

Time to
First Token

Lower is Better

End-to-End
Latency

Lower is Better

Inter-Token
Latency

Lower is Better

Token
Throughput

Higher is Better

38

Supported Models

Self-hosted LLM models through the

Hugging Face transformers library:

❏ Llama Family

❏ DBRX

❏ Microsoft Phi

❏ BERT

❏ Mistral

❏ Qwen

❏ Many others...

API Provided LLM models:

• OpenAI Compatible APIs

• Anthropic

• TogetherAI

• HuggingFace API

• LiteLLM

• Vertex AI

• SageMaker

• Local Vllm

https://huggingface.co/docs/transformers/en/index

39

LLM Inference Benchmarking Study

NVIDIA H100

NVIDIA V100S [2X]

GPU

Llama2 7B Chat

Llama3 8B

Models

Sample of

Shakespear’s Sonnets

Prompts

40

Nvidia H100 Vs. 2 X V100S

Today you can rent one NVIDIA H100 on Ori Cloud

for $3.24/h and two Nvidia V100S for $1.91/h, which

will give you the following:

Chip
VRAM /

GPU
vCPUs

RAM

(GB)

Storage

SSD

Storage

NVMe

Band-

width

(GBPs)

1 X

H100
64 30 90 500 4

2 X

V100S
80 30 380 50 3840 8

https://www.ori.co/get-started

41

Nvidia H100 Vs. 2 X V100S

For all configurations,

the H100 chip

decreased TTFT by an

average of 40.9%.

Time to
First Token

Lower is Better

42

Nvidia H100 Vs. 2 X V100S

With the exception of

Llama2 7B Chat with 1

concurrent request, the

H100 chip provided an

average of 52.0%

decrease in ITL over 2

X V100S.

Inter-Token
Latency

Lower is Better

43

Nvidia H100 Vs. 2 X V100S

For all configurations,

the H100 chip

decreased ETEL by an

average of 53.7%.

End-to-End
Latency

Lower is Better

44

Nvidia H100 Vs. 2 X V100S

With the exception of

Llama2 7B Chat with

one concurrent

request, the H100 chip

increased token

throughput by an

average of .83 tokens

per second.

Token
Throughput

Higher is Better

Llama2 Vs. Llama3

Llama3 was released on 18 April, 2024 about 9 months

after Llama2. We know Meta has the compute equivalent

of 600,000 NVIDIA H100 GPUs. So, it’s safe to say

expectations were high!

Other model performance benchmarks have shown a

strong improvement, however we found Llama3 did not

perform as quickly as Llama2 using BeFOri.

45

46

Meta’s Llama2 Vs. Llama3

Llama3 8B performed

much better than

Llama2 7B for TTFT on

2 X V100S, but

performance was

about the same on the

H100 chip.

Time to
First Token

Lower is Better

47

Meta’s Llama2 Vs. Llama3

With the exception of

one concurrent request

on 2 X V100S chips,

Llama3 8B was on

average 7.3% slower

than Llama2 7B.

Inter-Token
Latency

Lower is Better

48

Meta’s Llama2 Vs. Llama3

Llama3 8B was slower

than Llama2 7B Chat

for every configuration

we tested, by an

average of 31.7% for

ETEL.

End-to-End
Latency

Lower is Better

49

Meta’s Llama2 Vs. Llama3

The results for TT are

mixed with the

performance of Llama2

and Llama3 falling with

one standard deviation

of each other.

Token
Throughput

Higher is Better

50

Get Started with BeFOri Today!

git clone https://github.com/ori-
edge/BeFOri.git
cd ./BeFOri
pip install -r requirements.txt
export PYTHONPATH="/PATH/TO/ori-
llmperf/src/"

https://github.com/ori-edge/BeFOri.git
https://github.com/ori-edge/BeFOri.git

51

Recommended Reading
● Building LLMs for Production: Enhancing LLM Abilities and

Reliability with Prompting, Fine-Tuning, and RAG

by Louis-François Bouchard & Louie Peters

● A Visual Guide to Quantization by Maarten Grootendorst

● Performances are plateauing, let's make the leaderboard steep

again

● An LLM agent for assisting machine learning research

○ [Blog] Sakana.ai

○ [arXiv Paper] The AI Scientist: Towards Fully Automated

Open-Ended Scientific Discovery

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
https://huggingface.co/spaces/open-llm-leaderboard/blog
https://huggingface.co/spaces/open-llm-leaderboard/blog
https://sakana.ai/ai-scientist/
https://arxiv.org/pdf/2408.06292
https://arxiv.org/pdf/2408.06292

52

Questions?

Thanks!

To get started on Ori Public Cloud, give us a shout…!

ML Engineer Lead LBS MBA Class of 2025

ciera.fowler@ori.co clowe.mba2025@london.edu

mailto:ciera.fowler@ori.co
mailto:clowe.mba2025@london.edu

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Ori’s Holistic Approach to GPU Performance for AI
	Slide 30
	Slide 31
	Slide 32: LLM Parallelisation Strategies
	Slide 33: Data Parallelism
	Slide 34: Model & Tensor Parallelism
	Slide 35: Pipeline Parallelism
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

