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Learning Outcomes

• Learn when to self-host large language models instead of using 

APIs providers

• Learn about GPU hardware requirements for LLMs

• Learn how to select the appropriate model for your use case

• Learn LLM optimisation strategies: quantisation, parallelism, and 

inferencing engines 

Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog
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Ori is the AI Native Cloud Platform

Deploy AI-optimized GPU instances for training, finetuning and inference workloads. Significantly

reduce GPU costs compared to traditional cloud providers. Scale effortlessly from on-demand instances 

to custom private clouds with bare-metal, virtual machines and Kubernetes GPU instances.



II. Self-Hosted LLMs
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Why Self Host LLMs?

Ori customers typically say:

• Data privacy and non-expatriation

• Customise (Optimise?) models
(e.g. finetunning, quantisation)

• No “noisy neighbor” interference

• Reduce Cost
(e.g. high utilisation, summarisation use cases)

• Predictable Costs

• Prevent Vendor Lock-in

• Control model versioning/updates

Example use cases:

• Research using sensitive healthcare data can self-

host to ensure participant confidentiality and 

compliance with data privacy regulations like 

GDPR.

• Research summarising/analysing large social 

media datasets for sentiment analysis may face 

prohibitive API costs.

• Long-term research projects will want to use the 

same model version throughout analysis to prevent 

to prevent inconsistencies in results over time.

• Research that requires knowlege of a regional 

dialect can fine-tunned a model cost effectively.

Maintain complete control over the data, model, and environment.
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Reference Architecture
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Reference Architecture
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GPUs and CPUs

CPU - Central Processing Units

• The CPU is like the brain of the computer. 

Everything the computer does, like running 

programs or apps, goes through the CPU.

• It carries out instructions, makes calculations, and 

completes tasks.

• Good at handling a few complex tasks at a time. It's 

optimized for sequential tasks where one step is 

completed before moving to the next.

• Best for general computing tasks, like running word 

processors, web browsers, or operating systems.

GPU - Graphics Processing Units

• The GPU is specialized for handling tasks that 

involve processing large amounts of data at once, 

such as rendering images and videos or performing 

machine learning computations. 

• It excels at parallel processing, meaning it can 

handle thousands of smaller tasks simultaneously, 

which makes it ideal for graphics, AI, and other data-

intensive workloads. 

• Its ability to process multiple operations in parallel is 

crucial for accelerating tasks that would take much 

longer on a CPU.
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All GPUs are not created equally...

NVIDIA Chips Dominate the Market:

• Industry-leading performance and reliability

• Software ecosystem (CUDA) and developer support

NVIDIA Chips:

• A100 – released 2020 (previous generation)

• H100 – released 2022 (current flagship)

• H200 – expected 2024 (next generation)

H100 wholesale prices are 
estimated to be at least 

US$30,000 each

Nvidia data centre GPU 
market share is 

estimated at 98%

Source: HPC Wire

Source: Tom’s Hardware

https://www.hpcwire.com/2024/06/10/nvidia-shipped-3-76-million-data-center-gpus-in-2023-according-to-study/
https://www.tomshardware.com/news/nvidia-to-sell-550000-h100-compute-gpus-in-2023-report
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GPU Configuration

Key GPU Attributes

• vCPU – virtual Central Processing Units

• RAM – Random Access Memory, aka “fast 

memory”, temporarily holds data that the computer 

needs quick access to while running programs.

• VRAM - video memory is specialised RAM that 

helps a computer's graphics card quickly process 

images and large tasks like LLMs. 

• Storage NVMe - high-speed storage (faster than 

SSD) that enables the computer to access and save 

large files almost instantly.

• Storage SSD - Solid-State Drive is ”slow memory”, 

that is used to keep files and programs over long 

time periods.

• Bandwidth - How fast data move can into and out 

of the system.

Practical Implications

1. VRAM –the entire model needs to be held in memory, 

based on the number of parameters and precision of the  

model

2. (v)CPU – the number of cores will determine the level of 

parallelisation you can support

3. Bandwidth – for online applications (e.g. chatbots), this 

can become the bottleneck
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Setting up a GPU Configuration on Ori

To Launch a VM on Ori’s Public Cloud:

1. Select GPU type & count
→ See previous slide

2. Choose a location
→ Geographical distance impacts latency

3. Choose an OS image
→ Typically Ubuntu v22.04 is a safe option

4. Configure Init Script

5. Set up networking
→ Allows external network access

6. Add public SSH key
→ This is like a “password“ to allow access

7. Name your virtual machine

A screenshot of a computer

Description automatically generated

https://console.ogc.ori.co/provisioning/vms/request
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Hugging Face

A company and open-source platform for machine learning that 

provides: 

• Tools – leaderboards, datasets

• Libraries – transformers, diffusers, accelerate

• Models
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Open LLM Leaderboard V1

Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog
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Hugging Face’s Open LLM Leaderboard

Leaderboards are used to aggregate and compare model quality benchmarks
• Hugging Face has become the leading source for these open-source models, widely 

adopted by AI researchers and developers. 

• Others are also popular, such as OpenAI’s benchmarks for closed models.

• Leading models were converging in performance, raising concerns about a plateau in 

innovation

• In response, HuggingFace released version 2 of their leaderboard in June 2024

Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog
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Why were benchmarks plateauing?

• Homogeneity in Training Data: Many models are trained on similar datasets, 

leading to less variety in outputs.

• Overfitting on Evaluation Data Sets: models appeared to be trained on 

benchmark data or on data very similar to benchmark data.

• Overemphasis on Scaling: Simply increasing model size isn’t yielding the same 

performance improvements as before.

• Benchmark Suitability: Benchmarks were not pushing models to develop new, 

real-world capabilities like reasoning or long-term memory.

• Benchmark Accuracy: Some benchmarks contained errors, e.g. MMLU was 

investigated by several groups (MMLU-Redux and MMLU-Pro), which surfaced 

mistakes in its responses.

Source: Hugging Face

https://arxiv.org/abs/2406.04127
https://arxiv.org/abs/2406.01574
https://huggingface.co/spaces/open-llm-leaderboard/blog
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How were New Benchmarks Selected?

1. Evaluation quality:

• Human review of dataset

• Widespread use in the academic and/or open-source community

2. Reliability and fairness of metrics:

• Multichoice evaluations are, in general, fair across models.

• Generative evaluations should either constrain the format very much or use very unambiguous metrics or 

post-processing to extract the correct answers.

3. General absence of contamination in models:

• Gating

• Newness

4. Measuring model skills that are interesting for the community:

• Correlation with human preferences

• Evaluation of a specific capability we are interested in
Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog
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Change to Use Normalised Scores

In addition to the changing which 

benchmarks are used, the average 

ranking now uses normalised 

scores:

• The random baseline is 0 points

• The maximal possible score is 100 

points

For example, in a benchmark containing two 

choices for each question, a random baseline will 

get 50 points (out of 100 points). Therefore, the 

range changed so that a 50 on the raw score is a 0 

on the normalized score.

Source: Hugging Face

https://huggingface.co/spaces/open-llm-leaderboard/blog
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How did the rankings change?

The top 10 models under the new 

rankings, as of the launch of Open LLM 

Leadboard V2 (top table). Some models 

maintained a relatively stable top 10 

ranking (in bold).

There was a large backlog of models to 

be evaluated on the new benchmarks at 

the time of launch. Many more models 

have been released and evaluated in the 

3 months since Leaderboard V2 was 

launched and the top 10 have changed.
Source: HuggingFace

https://huggingface.co/spaces/open-llm-leaderboard/blog
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Model Selection Best Practice

With the rapid rate of change in the leaderboard, it may seem futile to select 

the top-ranking model for a project when it soon will fall in the rankings 

anyway.

Best practice is to take a more holistic approach to model selection:

• Limit your selection to models below a certain size. There is a tradeoff between 

model size and resource costs. We typically expect bigger models to produce 

higher quality results, but sometimes the incremental improvement is not worth 

the cost.

• Rank the remaining options by the subset of benchmarks relevant to your use 

case, rather than the average of all Hugging Face selected benchmarks.

• If you have the resources, develop your own “benchmark” or set of prompts and 

acceptable responses to test the top-ranking models from the previous criteria.
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Model Size and Performance Trade Offs

The evolution of all the 7400 

evaluated models on the 

Open LLM Leaderboard V1 

(red, yellow, orange dots) 

and V2 (black dots) through 

time reveal a strong trend 

going from larger (red dots) 

models to smaller (yellow 

dots) models while at the 

same time improving 

performance.

Source: HuggingFace

https://huggingface.co/spaces/open-llm-leaderboard/blog
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The 6 Leaderboard V2 Benchmarks

• MMLU-Pro: Harder, refined question set with 10 multichoice answers each, 

improved quality and noise reduction. Focuses on reasoning.

• GPQA: Expert-designed, PhD questions aimed at preventing model 

contamination by gating the questions.

• MuSR: Complex, multi-step reasoning problems like murder mysteries or team 

allocation.

• MATH-Lvl5 : High-school-level competition math problems, focusing on strict 

output formats.

• IFEval: tests the capability of models to clearly follow explicit instructions, such 

as “include keyword x”, rather than the actual contents generated.

• BBH: 23 challenging tasks testing logic, language understanding, and world 

knowledge. It is reportedly difficult for both models and humans, and strongly 

correlates with human preferences. Source: HuggingFace

https://huggingface.co/spaces/open-llm-leaderboard/blog
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Correlation of Benchmark Results

Different evaluation results are not always 

correlated with one another: 

• MMLU-Pro and BBH are rather well correlated. These 

benchmarks are also quite correlated with human preference 

(i.e., they tend to align with human judgment)

• IFEval targets chat capabilities. It investigates whether models 

can follow precise instructions, so it tends to favour chat and 

instruction-tuned models, with pretrained models having a 

harder time reaching high performances.

• MMLU-Pro and GPQA provide the best performance on 

model knowledge rather than alignment or chat capabilities.

• MATH-Lvl5 is obviously interesting for people focusing on 

math capabilities.

Source: HuggingFace

https://huggingface.co/spaces/open-llm-leaderboard/blog
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Parallelism

Finding the right balance

between data, pipeline, and

tensor parallelism may yield

the largest efficiency gains.

Ori’s Holistic Approach to
GPU Performance for AI

The size of inference models (and

therefore their efficiency) may be

improved through quantization, or

pruning (for instance).

Use Case(s) Definition

Are you doing training? Inference?
What models are you using?
Understanding the workloads that

matter most will help focus on the
relevant optimization areas. This is

particularly important in the context of
complex, multimodal workflows.

Model Quantization

Data Management

Ensuring data locality, and establishing
a steady data flow is particularly critical
for certain types of AI workloads (e.g.
LLMs training).

Intra-GPUs Optimization

Choosing the right type of GPUs and
their optimized software stack (making
use of mixed precision, optimized
libraries, etc.) will yield the last extra
bits of performance.

Going through these stages will remove
the most obvious pitfalls that can harm
GPUs productivity, and help you get the
best bang for your bucks!

Mission Accomplished!

Source: 
Patrick
Wohlschlegel
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LLM Precision

Model parameters are mostly weights,

which can be quite expensive to store.

During inference, activations are created 

as a product of the input and the 

weights, which similarly can be quite 

large.

Source: Exploring Language Models

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
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Computing LLM VRAM from Precision

Source: Exploring Language Models

“Full 

Precision
”

NOTE: In practice, more things relate to the amount of (V)RAM you 
need during inference, like the context size and architecture.

The memory required for an LLM can be 

calculated from the precision and number of 

parameters.

Taking Meta-Llama 3.1 70B as an example, 

we can calculate the VRAM requirement at 

different precisions:

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization


LLM Parallelisation Strategies

Pipeline Parallelism

GPU A GPU B GPU C

100% 

Utilization

42% 

Utilization

42% 

Utilization

Model & Tensor Parallelism

GPU A GPU B GPU C

80% 

Utilization

100% 

Utilization

80% 

Utilization

Data Parallelism

GPU A GPU B GPU C

100% 

Utilization

100% 

Utilization

100% 

Utilization

Source: Patrick Wohlschlegel
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Data Parallelism

GPU A GPU B GPU C

100% 

Utilization

100% 

Utilization

100% 

Utilization

Source: Patrick Wohlschlegel

• The same model is copied across GPUs, and 

each processes different batches of data in 

parallel.

• Data parallelism works well for simple data 

sets, but performance tends to degrade as data 

size exceeds GPUs memory capacity.

31



Model & Tensor Parallelism

Source: Patrick Wohlschlegel

Model Parallelism:

• The model itself is split across multiple GPUs, with each GPU handling 

different parts of the model.

• Useful for large models that don’t fit on a single GPU.

Tensor Parallelism:

• Splits individual tensors (data structures) across GPUs.

• Each GPU processes a portion of the tensor simultaneously.

Model & Tensor parallelism reduces memory requirement per GPU but 

introduces synchronization penalties.

GPU A GPU B GPU C

80% 

Utilization

100% 

Utilization

80% 

Utilization
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Pipeline Parallelism

Source: Patrick Wohlschlegel

• Model layers are split into stages, with each GPU 

handling a different stage.

• Inputs move through the pipeline, allowing 

simultaneous processing across stages.

• Pipeline parallelism can be very effective but may 

cause low GPU utilization due to data dependencies 

between layers placed on different GPUs.

GPU A GPU B GPU C

100% 

Utilization

42% 

Utilization

42% 

Utilization
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Inferencing Engines Leverage Parallelism

• TensorRT: Uses data parallelism and tensor-level parallelism

to optimize inference, distributing data across GPUs and 

reducing redundant computations within tensors.

• vLLM: Employs model parallelism and pipeline parallelism, 

splitting models across GPUs and processing different parts 

simultaneously, enhancing efficiency for large language models.

• Grok: Implements model parallelism and fine-grained tensor 

parallelism, enabling large-scale models to be split across 

multiple devices while maintaining high computational 

efficiency.
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Our customers needed help 

benchmarking self-hosted AI 

models across different chips.

Why leave the selection of the optimal hardware to chance? 

There’s no simple heuristic, but you will need:

● sufficient RAM to hold billions of parameters in memory 

● sufficient bandwidth to get your prompts and inferences to 

and from users

● sufficient compute to handle parallel requests at scale

BeFOri addresses this gap in the MLOps cycle.
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1 Request:

ttft = time to 
first token

Rconcurrent = 
concurrent 

requests

tete = end-to-end latency

…

How to Perform a Cost-per-Token Analysis 
of Self-Hosted LLMs Using BeFOri: Visualisation of BeFOri Benchmarking
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BeFOri Provides 4 Metrics

Time to 
First Token

Lower is Better

End-to-End 
Latency

Lower is Better

Inter-Token 
Latency

Lower is Better

Token 
Throughput

Higher is Better
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Supported Models

Self-hosted LLM models through the 

Hugging Face transformers library:

❏ Llama Family

❏ DBRX

❏ Microsoft Phi

❏ BERT

❏ Mistral

❏ Qwen

❏ Many others...

API Provided LLM models:

• OpenAI Compatible APIs

• Anthropic

• TogetherAI

• HuggingFace API

• LiteLLM

• Vertex AI

• SageMaker

• Local Vllm

https://huggingface.co/docs/transformers/en/index
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LLM Inference Benchmarking Study

NVIDIA H100

NVIDIA V100S [2X]

GPU 

Llama2 7B Chat

Llama3 8B

Models

Sample of 

Shakespear’s Sonnets

Prompts
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Nvidia H100 Vs. 2 X V100S

Today you can rent one NVIDIA H100 on Ori Cloud 

for $3.24/h and two Nvidia V100S for $1.91/h, which 

will give you the following:

Chip
VRAM / 

GPU
vCPUs

RAM 

(GB)

Storage 

SSD

Storage 

NVMe

Band-

width 

(GBPs)

1 X 

H100
64 30 90 500 4

2 X 

V100S
80 30 380 50 3840 8

https://www.ori.co/get-started
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Nvidia H100 Vs. 2 X V100S 

For all configurations, 

the H100 chip 

decreased TTFT by an 

average of 40.9%.

Time to 
First Token

Lower is Better
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Nvidia H100 Vs. 2 X V100S 

With the exception of 

Llama2 7B Chat with 1 

concurrent request, the 

H100 chip provided an 

average of 52.0% 

decrease in ITL over 2 

X V100S.

Inter-Token 
Latency

Lower is Better
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Nvidia H100 Vs. 2 X V100S 

For all configurations, 

the H100 chip 

decreased ETEL by an 

average of 53.7%.

End-to-End 
Latency

Lower is Better
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Nvidia H100 Vs. 2 X V100S 

With the exception of 

Llama2 7B Chat with 

one concurrent 

request, the H100 chip 

increased token 

throughput by an 

average of .83 tokens 

per second.

Token 
Throughput

Higher is Better



Llama2 Vs. Llama3

Llama3 was released on 18 April, 2024 about 9 months

after Llama2. We know Meta has the compute equivalent 

of 600,000 NVIDIA H100 GPUs. So, it’s safe to say 

expectations were high!

Other model performance benchmarks have shown a 

strong improvement, however we found Llama3 did not 

perform as quickly as Llama2 using BeFOri.

45
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Meta’s Llama2 Vs. Llama3

Llama3 8B performed 

much better than 

Llama2 7B for TTFT on 

2 X V100S, but 

performance was 

about the same on the 

H100 chip.

Time to 
First Token

Lower is Better
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Meta’s Llama2 Vs. Llama3

With the exception of 

one concurrent request 

on 2 X V100S chips, 

Llama3 8B was on 

average 7.3% slower 

than Llama2 7B.

Inter-Token 
Latency

Lower is Better
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Meta’s Llama2 Vs. Llama3

Llama3 8B was slower 

than Llama2 7B Chat 

for every configuration 

we tested, by an 

average of 31.7% for 

ETEL.

End-to-End 
Latency

Lower is Better
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Meta’s Llama2 Vs. Llama3

The results for TT are 

mixed with the 

performance of Llama2 

and Llama3 falling with 

one standard deviation 

of each other.

Token 
Throughput

Higher is Better
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Get Started with BeFOri Today!

git clone https://github.com/ori-
edge/BeFOri.git
cd ./BeFOri
pip install -r requirements.txt
export PYTHONPATH="/PATH/TO/ori-
llmperf/src/"

https://github.com/ori-edge/BeFOri.git
https://github.com/ori-edge/BeFOri.git
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Recommended Reading
● Building LLMs for Production: Enhancing LLM Abilities and 

Reliability with Prompting, Fine-Tuning, and RAG 

by Louis-François Bouchard & Louie Peters

● A Visual Guide to Quantization by Maarten Grootendorst

● Performances are plateauing, let's make the leaderboard steep 

again

● An LLM agent for assisting machine learning research

○ [Blog] Sakana.ai

○ [arXiv Paper] The AI Scientist: Towards Fully Automated 

Open-Ended Scientific Discovery

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
https://huggingface.co/spaces/open-llm-leaderboard/blog
https://huggingface.co/spaces/open-llm-leaderboard/blog
https://sakana.ai/ai-scientist/
https://arxiv.org/pdf/2408.06292
https://arxiv.org/pdf/2408.06292
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Questions?



Thanks!

To get started on Ori Public Cloud, give us a shout…! 

ML Engineer Lead LBS MBA Class of 2025

ciera.fowler@ori.co clowe.mba2025@london.edu

mailto:ciera.fowler@ori.co
mailto:clowe.mba2025@london.edu
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